

DC INVERTER AIR TO WATER HEAT PUMP Service Manual

Ver:2016V5

Table of Contents

1.	Precaution		3		
2.	Explosion drawing		4		
3.	System Diagram		7		
4.	Wiring diagram		8		
5.	Heat Pump Control Theory and Function				
6.	Trouble shooting		7		
7.	Parameter meaning and	usage4	0		

1. Precaution

1.1 General

- 1. Wiring tasks should be carried out by qualified electricians only
- 2. Check all the electric box wires and cables are tightly connected, tight all the wire screws
- 3. Improper treatment might lead to the accidents or personal injury caused by fire, electrical shock or unit's falling off, and water leakage in the machine. Please contact professional repair and local dealer.
- 4. The unit shall not be installed at a spot with potential hazard of leakage of inflammable gas. In case the leaked gas is congregated around the machine, there might be the risk of explosion.
- 5. Make sure that the foundation of installation is stable , If the foundation is unstable, the outdoor unit may drop and cause a casualty accident. so this must be validated carefully.
- 6. Make sure that the electric leakage protection switch is fixed , If no electric leakage protection switch is fitted at the beginning of the electric supply, it maybe cause electric shocks or fires.
- 7. If any abnormity occurs in the unit (such as burned taste inside the unit), cut off the power supply immediately, and contact professional repair and service department of local dealer.
- 8. Before cleaning the unit, shut off the electric supply of the unit firstly to avoid injuries caused by fan in operation. Do not rinse the unit by water because the rinsed unit may cause electric shock.
- 9. Make sure to shut off the electric supply before maintain the unit.
- 10. Please do not insert fingers or sticks into air outlet or air inlet.

1.2 Transport and storage

1. The machine must be transported and stored vertically.

1.3 Important Notice for Antifreeze to Avoid heat pump broken

- 1. Water flow switch MUST be installed during installation for heat pump air conditioning side to ensure proper water flow.
- 2. Water filter MUST be installed before water go into PLATE HEAT EXCHANGER. The water filter need to be cleaned at least half an year.
- 3. **Must use enough brine(glycol) in the water system in cold area**. if the air temp is lower than -0 °C, for the safety, you must use brine(glycol) as the fluid in the heat pump water system instead of pure water.
- 4. **MUST keep the electricity power supply always connected even when you don't use the heat pumps.** Our heat pump has antifreeze function if with electricity connected. So If without enough glycol (antifreeze liquid) and if the electricity is cut off by accident for more than 30 minutes in winter, you need to drain out all the inside water to protect the heat pump to be frozen.

2. Explosion Drawing and Parts list

MODEL: 9KW DC

ltem No	Part No	Part Name	Туре
1	AWD08ZJ012A	Top Panel	
2	AWB08ZX002A	Condensor	
3	AWB06ZJ003A	Devision plate	
4	AWB08ZX001A	Plate heat exchanger	
5	DCAWD06ZD001H	IPM Module	
6	DCAWD08ZD003H	Inverter Outdoor PCB (power PCB)	MWH089-V5-MZ150DSY(8K)
7	D15T0017	Water Pump PCB	
8	AGS80ZD004A	Inverter Indoor PCB (water control PCB)	MGH077-V5-DSY(US)
9	X17T0001	Expansion Water Tank	PZG-002 3/4" 8BAR

2. Explosion Drawing and Parts list

	•	•	
10	AWB06ZJ004C	Electric Box	
11	AWB06ZJ006B	Back Grille	
12	D01T0045	Compressor	DA150S1C-20FZ
13	AWD08ZJ004B	Right-back panel	
14	AWD08ZJ005B	Right-mid panel	
15	X05T0008	Solenoid 3 way valve(optional)	
16	D03T0010	High efficiency Water Pump	PARA 25/7.5(PWM)
17	AWB08ZJ001A	Base plate	
18	X20T0001	Water Pressure Gauge	
19	X16T0001	Needle valve	
20	X09T0004	Low pressure switch	(0.03/0.2MPa)
21	X06T0001	Four Way valve	STF-0218G
22	X10T0001/X10T0002	Bypass valve and coil	
23	X09T0003	2nd High pressure switch	(3.7/3.1MPa)
24	X09T0002	High Pressure Switch	(4.2/3.6MPa)
25	X13T0004	Liquid Accumulator	
26	X03T0003	Thermo Expansion Valve	BAE3.0-ZW-195
27	AWD08ZJ007A	Maintenance Panel	
28	D02T0026	Fan motor	YDK-80-6B-2 (50/60HZ-230V)
29	F03T0002	Fan	φ460*170
30	AWB06ZJ007A	Motor holder	
31	AWD08ZJ002B	Frong Panel	
32	AWD08ZJ003A	Left-side panel	
33	MID17ZJ010A	Fan guard	

Nameplate:

AH9	
Air to Water Hea	t Pump outdoor Installation
Model Name	AH-9AC-410M
CAPAC. 27770 BTU CONSUME 1.78	kw COOL 15.60
CAPAC. 30530 BTU CONSUME 1.50	KW HEAT 5.97
WATER 7.3 GPM REFRIGER R410a	CHARGE 4.6 Lbs
PRESSURE 610/65 WEIGHT 200	GRADE IPX4
POWER 208-240/1/50~60 CURRENT 13.0	A BLOCK 13.0 A

3. Heat Pump & Chiller System Diagram

4.1 Wiring Diagram

Please note: the new power PCB 2nd high pressure switch is connected to CN11 not same as old PCB connected to AIN5, for exact correction connection, please refer to the wiring diagram sticker on the unit electric box cover.

4.2.1 Control system with Optional Water Pump Control PCB for VSP water Pump

4.2.2 Control System Main Parts(without VSP water pump)

- 1.IPM Board
- 2.Outdoor PCB (Power Control PCB/Refrigerant system PCB)
- 3. Indoor PCB(Water System PCB)
- 4.Comm wire between IPM and Power PCB
- 5. Compressor current detector

6.Comm wire between Water system PCB and power PCB

7.High, low pressure switch connection

4.2.3 Indoor PCB components location

CN6 is for 3-way valve G1,G2,G3

G1:DHW/AC switch CN6-SMB G2:Free cooling switch CN6-SMA G3:Solar valve switch CN6-SMC

Note: The output is 12VDC.Need to add relay to connect 220V valve.

4.3 Power Control PCB

Led location and meaning.

Power Led: When connect power, this Led will be always On. If need to shut off power, the Led will be on for maybe 30 seconds due to the capacitor power supply. Must wait for the Led off for later processingCommunication Led: When communication is ok, this Led will be always flashing.

Error Led: When no error, it is off. When error happen, it will flash some times and be off for 2 seconds

8. Water Pump Control PCB

More Parts connection diagram

1. Outside 3 way valve G1(DHW/AC switch), G3(Seasonal /solar valve)

Electric Parts Control Program working theory

5.1. Compressor

5.1.1. After the compressor is shut down, it has a minimum interval of 3 minutes before the next start up, except defrost.

5.1.2. Compressor running frequency(speed) control

5.1.2.1. After compressor start, it runs step by step to achieve target frequency according to table 1

Table 1

Frequency scop	Up	Down
15~60Hz	0.5Hz/S	2Hz/S
61~75Hz	0.5Hz/S	2Hz/S
76~100Hz	0.5Hz/S	2Hz/S

5.1.2.2. Mid pressure switch affection to frequency

During DHW

1. If mid-pressure switch open, compressor will limit the frequency

2. Compressor will stop increasing frequency and remember current frequency (P) and decrease frequency.

3. When frequency is decreased to (P-10) Hz, if no protection active or reach target temp, keep working at (P-10) Hz

4. When compressor stop or mid-pressure close for 3 minutes, compressor frequency limitation will be cancelled.

During AC

1. If mid-pressure switch open, compressor will limit the frequency

2. Compressor will stop increasing frequency and remember current frequency(P1) and decrease frequency.

3. When compressor decreased to (P1x2)/3, keep this frequency for 2 minutes. If not near or not reach target temp to decrease frequency again, test the water temp every 1 minute, if water temp increase 1° C, compressor will decrease 4hz, minimum to (P1x1)/3. If the water temp decrease 1° C, then the compressor frequency will increase 4hz, max to P1.

4. When compressor stop or mid-pressure switch close for 10minutes, frequency limitation will be cancelled.

During AC heating

If outside air temp is at $0 \sim 8^{\circ}C$ and returned water temp $\leq 32^{\circ}C$, limit compressor working frequency not higher than 75hz (for 11kw type, a bit different for different model)

Note: if heat pump work with unexpected low capacity. Please check if the mid-pressure switch is loose or open. The mid-pressure switch is to connected to Outdoor PCB AIN5 port.

5.2. Start up/Shut down Cycle

- When the heat pump switches on, the water circulation pump and the fan will start 60 seconds before compressor
- During DHW mode, when the heat pump switches off, the water circulation pump shuts down 30 seconds after the compressor. The fan switches off 5 seconds after the compressor

- During AC mode, the fan will work similar as AC. The water pump running mode is set at parameter 26.
- During defrost, the water circulation pump does not stop running;

5.3 DHW Auxiliary Electric Heater E1

When parameter P27 = "1", E1 is off. When P27="0", the auxiliary electric heater E1 turns on as set out in the conditions below:

- Ambient temperature(AIN3) \leq set value (parameter P9,-20 °C ~ 30 °C, default 0 °C);
- Compressor's working time ≥ 15 minutes;
- DHW water tank temperature(IN1) < setting temperature;

5.4 2nd heat source starting

When parameter P27 is 0, E2 is AC heating control port, When parameter P27 is 1, E2 is 2nd heat source control port

5.5 Multifunctional port E2

When parameter P27= "1", E2 is for 2nd heat source control

- A, if Ambient temperature < set value (parameter P28,-30 $^\circ$ C ~ 15 $^\circ$ C, default -15 $^\circ$ C), E2 On, heat pump standby.
- B, if Ambient temperature \geq set value (parameter P28, default -15 °C),
 - E2 Off, heat pump start working.

When P27="0" E2 is for AC auxiliary electric heater.

E2 turns on as set out in the conditions below:

- When the heat pump is running DHW, the auxiliary electric heater E2 runs as the same as the auxiliary electric heater E1.
- When the heat pump is running heating:
- A, When the heat pump runs heating normally, the auxiliary electric heater **E2** turns on as set out in the conditions below:
- Ambient temperature \leq set value (parameter P10,-20 °C ~ 20 °C, default 0 °C);
- Compressor's working time ≥ 15minutes;
- AC water inlet temperature(IN2) \leq setting temperature;
- B, During defrosting, if inlet water temperature \leq 38 $^\circ C$, the auxiliary electric heater **E2** turns on.
- C, During antifreezing, the auxiliary electric heater **E2** turns on.
- D, If inlet or outlet temperature sensor breakdown, the auxiliary electric heater E2 turns on.

5.6 Electric 3 way Valve G1

In DHW mode, G1 valve is power off. In AC model, G1 is power on.

5.7: .Operating Mode Principle

1) Space Cooling Mode

Temperature setting range is 10-25 ° C, the factory setting is 12 $^\circ\mathbb{C}$;

2) Space Heating Mode

Temperature setting range is 10-55 ° C, the factory setting is $45 \,^{\circ}$ C;

3) Hot Water Mode

Temperature setting range is 10-60 ° C(50~60c is increased by electric heater), the factory setting is 50 $^\circ \rm C$;

4) Defrost Cycle

Auto Defrost mode (normal defrosting)

5.8 Defrost control theory

5.8.1 start conditions1

5.8.1.1 Compressor accumulated running time more than defrosting interval;

5.8.1.2 more than 8 minutes after compressor starts;

5.8.1.3 The outdoor fan motor full speed output;

5.8.1.4 outdoor pipe temperature sensor measured ≤ 0 °C; (The default is 0 °C, the actual work according to wired remote setting);

5.8.1.5 outdoor pipe temperature decrease \triangle T ≥ 5 °C (more than eight minutes after compressor starts, record the outdoor pipe temperature);

5.8.1.6 When the all above 5 conditions are met, the outdoor unit begin to defrost.

If all the above conditions are satisfied, start defrost

5.8.2 Start condition 2

5.8.2.1 Compressor accumulated running time more than defrosting interval;

5.8.2.2 more than 3 minutes after compressor starts;

5.8.2.3 outdoor fan motor full speed output;

5.8.2.4 outdoor pipe temperature sensor measure \leq -5 °C;

5.8.2.5 When the all above 4 conditions are met, the outdoor unit begin to defrost.

If all the above conditions are satisfied, start defrost

5.8.3 Start condition3

1. Compressor accumulation working time is more than 150 minutes

2. Air temp $\leq 4^{\circ}$ C

If all the above conditions are satisfied, start defrost

5.8.4 defrost interval

5.8.4.1 Defrosting interval depends on the defrost time (the longest 70 minutes, the shortest 30 minutes);

5.8.4.2 After starting to heat, the first defrost interval is 35 minutes and then the defrost interval according to defrost time to adjust.

Defrost time	Next defrost interval
Less than 4 minutes	Extend 3 minutes
4~6 minutes	unchanging
More than 6 minutes	To cut down 10 minutes

5.8.5 defrosting process

5.8.5.1 once defrosting start, it would be not affected by indoor unit defrosting finish.

5.8.5.2 compressor, outdoor fan off, bypass valve turn on at the same time; 30 seconds later, four-way valve and bypass valve are also off; another 30 seconds, compress enter into defrosting; defrost time is at least 1 minute; defrost finish and the compressor off, outdoor fan full speed output, 30 seconds later the four-way valve turn on, another 30 seconds compressor turn on (shown as below)

5.8.6 Defrosting end conditions

5.8.6.1 outdoor pipe temperature \geq 30 °C (subject to the actual set on wired remote of unit, the range: **10~35°C**), (compressor defrost run for at least 1 minute);

5.8.6.2 compressor defrost is running at 10 minutes; (when the defrost interval is 30 minutes, and defrost end condition is 10 minutes twice in succession, the maximum defrost time automatically changed to 15 minutes; when the defrost time less than 6 minutes, the maximum defrost time automatically restored to 10 minutes);

5.8.6.3 In any case, the compressor defrost runs the longest time for 15 minutes;

5.8.6.4 When the defrosting finish, the cumulative compressor run time cleared.

5.8.7 Defrost problem solution

Problem: Never start Defrost, Defrost not clean, Ice bands at the back of the heat pump as below

Solution:

1.Start the heat pump with cooling function for 15 minutes to force defrost the ice first. Then try the heat pump heating function.

2. If still problem, move the coil pipe temp sensor to the iced copper pipe and wrap the pipe temp sensor with aluminum foil Self adhesive tape and fix it tightly to the new copper pipe. The pipe temp is easy to transform the temp by the aluminum foil.

As shown below

(1).Remove the pipe sensor clip first

(3) Wrap the sensor with aluminum foil adhesive tape and fix it

(2). Move sensor to the iced pipe

3. Adjust defrost relative parameters.

Parameter 03,06,07,08,13 is for defrost setting.

the defrost function watches parameter 03, triggers defrost when copper pipe temp below that, runs until it hits Parameter 06 or times out on parameter 07, and then won't check again until the Parameter 08, or Parameter 08xParameter 13 time has elapsed.

Parameter 03 the higher temp the more frequent defrost (better keep it 0c not 0F. Sometime can change it to 2c if defrost start too slowly)

Parameter 06 the lower temp the faster to quit defrost (better not change as lower pipe temp maybe cannot clean all the ice, normally the temp increase very fast in a few minutes)

Parameter 07 to prevent the heat pump stay in defrost always(15 minutes is also ok, it will not affect the defrost result if heat pump function is ok)

Parameter 08 sometimes can be changed to 30 minutes.

Parameter 13 It is used for some dry area, sometime it has no ice at the outdoor for several hours.

If defrost comes too slowly, you can increase parameter 03 value to "2", Change Parameter 08 value to 30 minutes. To make the defrost more frequently.

4. The heat pump back must keep at least 30 cm distance away from the wall. The heat pump front should be kept at least 3m without block air.

5.9: Anti-freeze Function DHW anti-freeze

When DHW water tank(IN1) temperature \leq 5 ° C, system starts hot water antifreeze, start domestic hot water mode and compressor, When hot water temperature is 20 °C or higher, withdraw DHW antifreeze. If the compressor starts over 30 minutes, withdraw DHW antifreeze.

AC anti-freeze

Air conditioning inlet (IN2) or outlet (IN3) water temperature is 4 ° C or lower, system starts AC antifreeze, water pump C4 and C6 start, check ambient temperature one minute later.

- A、 Ambient temperature ≤ 15 ° C, start compressor for heating
- B. Ambient temperature \geq 15 ° C, only turn on water pump C4 and C6

When the input water temperature ≥ 10 ° C or compressor operates over 30 minutes , withdraw AC antifreeze.

When anti-freezing, if water temperature reduced to 1 ° C or lower, machine will stop and error code Pd display.

5.10: Compressor Heater

The HEAT PUMP is equipped with a compressor heater that heats the compressor before start-up and when the compressor is cold. The compressor heater must have been connected for 3-10 minutes before the FIRST start.

The compressor heater will start automatically after turn on the heat pump **and** the ambient air temperature is lower than 20C.

When inverter heat pump has error, the LCD controller will directly show "P" or "E" at AC temp location and show error code at DHW temp location, press ▼ key to search more error codes happened at the same time. Please see table below for error code, possible error reason and Error checking and solution.

Code display like EX or Px, eg: E2, P5 Error code list

		Outdo			
Error	Error Meaning	or	Possible Error Reason	Error Solution	
Code		Led2			
E1	compressor discharge gas	Flash	1.Refrigerant low	1. Check the refrigerant pressure and check if there is	
	high temp. protect	10	2. throttling device problem	leakage.	
		times	3.Water flow volume is too low	2. Check the thermo expansion valve	
				3. Check the water flow volume and check if the water pump	
				is small or has dust or other problem.	
E2	Outdoor air temp sensor	Flash	Sensor open circuit or short	1.Reconnect the sensor	
	fault	3	circuit	2.Meausre the sensor resistance at different temp, if it is error	
		times		change the sensor	
E3	Pipe temp or returned air	Flash	Sensor open circuit or short	1.Reconnect the sensor	
	temp sensor fault	6	circuit	2.Meausre the sensor resistance at different temp, if it is error	
		times		change the sensor	
E4	AC returned water temp.	No	Sensor open circuit or short	1.Reconnect the sensor	
	sensor fault	flash	circuit	2.Meausre the sensor resistance at different temp, if it is error	
			stop compressor in AC	change the sensor	
E5	AC output water temp.	No	Sensor open circuit or short	1.Reconnect the sensor	
	sensor fault	flash	circuit	2.Meausre the sensor resistance at different temp, if it is error	
			stop compressor in AC	change the sensor	
E6	Hot water temp. sensor	No	Sensor open circuit or short	1.Reconnect the sensor	
	fault	flash	circuit	2.Meausre the sensor resistance at different temp, if it is error	
			stop compressor at DHW	change the sensor	
E7	Solar water temp. sensor	No	Sensor open circuit or short	1.Reconnect the sensor	
	fault	flash	circuit	2.Meausre the sensor resistance at different temp, if it is error	
			Compressor run	change the sensor	
FB/E8	Outdoor coil high temp	Flash	Outdoor unit heat exchange not	1.Check if the outdoor is too near the wall	
	protection	15	good	2.Check if fan blowing	
		times		3.Check if the coil temp sensor error	
E9	AC antifreeze twice	No	Inlet or Outlet water temp is	Check inlet and outlet water temp sensor not loose or not	
		flash	lower than 4c, AC antifreeze 2	error	
			times within 90 minutes		
EA	DHW antifreeze twice	No	DHW tank water temp is lower	Check DHW tank temp sensor is at warm location of DHW	
		flash	than 5c, antifreeze 2 times within	tank ton	
			60 minutes		
Eb	Indoor refrigerant pipe	No		1.Reconnect the sensor	
	temp sensor error	flash		7.Meausre the sensor resistance at different temp, if it is error	

				change the sensor
F1	Voltage protect	Flash 1 times	Voltage too high or too low (after voltage become normal 165~265VAC, unit auto restart)	Check if the electricity supply is ok, wire not loose.
F2	Rating module PFC error	Flash	IPM module(PFC) connection wire loose or IPM module broken	1.Check if there is any burn mark at IPM
F3	Compressor stopped abnormally	Flash	Power supply error, electromagnetic interference, Outdoor PCB error or compressor broken	 Shut off the power supply wait for 3 minutes and reconnection the power again. Check all the wire connection not loose
F4	Outdoor IPM module radiator sensor fault	Flash 5 times	IPM module temp sensor error	Reconnect or change the sensor
F5	Outdoor unit current sensor fault	Flash 8 times	Running Current sensor fault or not cross the test wire	Reconnect or change the sensor
F6	IPM or module control board fault	Flash 14 times	 Comm wire between IPM module and outdoor PCB IPM Module is burned or IPM has no power supply from the AC contactor Outdoor PCB comm port error 	 Check if the IPM module(PFC) connection wire with outdoor PCB not loose. Check if there is any burn mark at IPM Check if the AC contact supply the power the the IPM Check if the outdoor PCB error
F7	Compressor fail to start	Flash	Decided by Outdoor unit	Check the wire connection, PCB and compressoor
F8	Outdoor unit overcurrent	Flash 11 times	Compressor working current too high	 Check the compressor relative wire connection. Shut off power supply and reconnect it after 3 minutes. Check if the refrigerant volume is ok Open the heat expansion valve 360~1080°
F9	Exhausted gas temp. sensor fault	Flash 7 times		 Reconnect the sensor Meausre the sensor resistance at different temp, if it is error change the sensor
FA	Outdoor module overheat,over-current	Flash 5 times	IPM temp too high, compressor current too high	 Shut off power supply and reconnect it after 3 minutes. Check if the IPM connection wire not loose or IPM burn.

P1	high pressure protect	Flash	1.High pressure switch loose or	1. If the error display before compressor start, it means high
		2	fault	pressure switch error. Please reconnect high pressure switch
		times	2. There is air get inside water	or change the switch. If error display when water temp is
			circuit.	about 40c, please check if the high pressure switch or mid
			3. Water flow volume is too	pressure switch is exchanged connected by mistake, refer to
			small, water pump is too small.	wiring diagram.
			4. Throttling device(expansion	2.Clean and purge the air from the water circuit.
			valve) problem	3.Clean the Water circuit filter or add a bigger water pump if
			5. There is air get inside the	water flow is not enough
			refrigerant system or refrigerant	4.0pen the thermo expansion valve $360 \sim 1080^\circ$, as per page
			volume too high	23
				5.Meausre the refrigerant pressure, re-vaccum the system and
				recharge the refrigerant.
P2	Low pressure protect	Flash	1. Low pressure switch loose or	1.If the error display before compressor start, it means low
		9	fault	pressure switch error. please reconnect the low pressure
		times	2.Throttling device(expansion	switch or change it
			valve) problem	2.0pen the thermo expansion valve $360 \sim 1080^\circ$, as per page
			3.Heat expansion valve need to be	23.
			preheated	3.Power off for minutes and power on again then turn on the
			4.Refrigerant low(leak)	unit. Maybe repeat this 2 or 3 times to preheat the expansion
				valve.
				4. Check the refrigerant leakage with soap water
P5	indoor unit water flow	Not	1.water flow too small. 2.Water	1.Clean the water filter, check if water pump big enough
	fault	flash	flow switch fault	2. Check and reconnect water flow switch
P6	outdoor unit(water source	Flash	1.water source side water flow	1 Clean the water filter, check if water nume his enough
	side) water flow fault	17	too small. 2.Water flow switch	2. Check and recomment water flow switch
		times	fault	2. Check and reconnect water now switch
P7	phase loss	Flash	Power connection fault	Reconnect power supply wires
P8	Wrong phase	Flash	Power connection fault	Reconnect power supply wires
P9	Communication fault	Flash	Power supply connection fault or	1.Check the power supply wire connection and wires
			communication between indoor	between outdoor PCB and indoor PCB
			and outdoor PCB fault	2. Check if the outdoor PCB error

E1. Compressor discharge gas high temp. protection Error code Diagnose and solution

Error Code	Power PCB Led2	Possible Error Reason	Error Solution
E1	Flash 10	1.Water flow volume is too low	1. Check the water flow volume and check if the water pump
	times	2.Refrigerant low	is small or has dust or other problem.
		3. throttling device problem	2. Check the refrigerant pressure and check if there is
			leakage.
			2. Check the thermo expansion valve

Trouble shooting:

Index1: Clean the Water filter

Index2: Check the refrigerant pressure at the high pressure needle valve when heat pump is working. The R410a pressure should in the below table range at different water temp. If it is too low, it means some leakage. Need to add some refrigerant , 50g for each time and recheck the pressure. If the pressure is too high, release refrigerant 50~100g.

Related High Pressure(Mpa)	2.3-2.6	2.6-2.8	2.8-3.0	3.0-3.3	3.4-3.6
Inlet Water temperature($^{\circ}$ C)	25	30	35	40	45

Check the pressure at different water temp.

Index 3: Thermo Expansion valve adjustment

Sometimes the pre set expansion valve need to be adjusted to open the valve to let it work properly. (Especially heat pump report compressor discharge air high temp and Refrigerant high pressure together)

 (1) remove the nut shown as the photo
 Please note it is bottom upside down view at normal expansion valve installation.

(2) On the photo, the arrow is pointing to the adjusting screw.

(3) Refer to the below view, from bottom view anti-clockwise is to increase the open degree. Clock wise is to close the valve (decrease the open degree). Follow the direction showing on the photo, open 1080 degree. Then the unit will work properly.

From bottom view, anti-clockwise is to open

Please note: from top view of heat pump, the clockwise is to open the valve screw.

Sensor fault diagnose and solution.

_		Outdo		
Error	Error Meaning	or	Possible Error Reason	Error Solution
Code		Led2		
E2	Outdoor air temp sensor	Flash	Sensor open circuit or short	1.Reconnect the sensor
	fault	3	circuit	2. Meausre the sensor resistance at different temp, if it is error
		times		change the sensor
E3	Pipe temp or returned air	Flash	Sensor open circuit or short	1.Reconnect the sensor
	temp sensor fault	6	circuit	2. Meausre the sensor resistance at different temp, if it is error
		times		change the sensor
E4	AC returned water temp.	No	Sensor open circuit or short	1.Reconnect the sensor
	sensor fault	flash	circuit	2.Meausre the sensor resistance at different temp, if it is error
			stop compressor in AC	change the sensor
E5	AC output water temp.	No	Sensor open circuit or short	1.Reconnect the sensor
	sensor fault	flash	circuit	2.Meausre the sensor resistance at different temp, if it is error
			stop compressor in AC	change the sensor
E6	DHW Hot water temp.	No	Sensor open circuit or short	1.Reconnect the sensor
	sensor fault	flash	circuit	2.Meausre the sensor resistance at different temp, if it is error
			stop compressor at DHW	change the sensor
E7	Solar water temp. sensor	No	Sensor open circuit or short	1.Reconnect the sensor
	fault	flash	circuit	2.Meausre the sensor resistance at different temp, if it is error
			Compressor run	change the sensor
Eb	Indoor refrigerant pipe	No		1.Reconnect the sensor
	temp sensor error	flash		7.Meausre the sensor resistance at different temp, if it is error
				change the sensor
F4	Outdoor IPM module	Flash	IPM module temp sensor error	
	radiator sensor fault	5		Reconnect or change the sensor
		times		
F5	Outdoor unit running	Flash	Running Current sensor fault or	
	current sensor fault	8	not cross the test wire	Reconnect or change the sensor
		times		
F9	Compressor air discharge	Flash		1.Reconnect the sensor
	temp. sensor fault	7		8.Meausre the sensor resistance at different temp, if it is error
		times		change the sensor

Trouble shooting:

Index 4: Sensors Location

Air temp sensor(Error cde:E2) connect to outdoor PCB AN3 port coil pipe temp sensor(E3), connect to outdoor PCB AN2 port Outlet water temp(E5) ,connect to indoor PCB IN3 and returned water temp sensor(E4), connect to indoor PCB IN2

Outdoor IPM radiator sensor(F4) Connect to outdoor IPM module port CN5

Outdoor running current sensor(F5)

Compressor air discharge tempsensor ((error code: F9) It is connected to outdoor PCB AN1

Index 5: Inverter 3950 sensor R-T Conversion Table

(air temp, coil copper pipe temp, inlet water temp, outlet water temp, DHW water tank temp sensor)

				R25=	=10K Ω ,	B25/50=395	0				
$RT(K\Omega)$	t2(°C)	$RT(K\Omega)$	t2(℃)	$RT(K\Omega)$	t2(°C)	$RT(K\Omega)$	t2(℃)	$RT(K\Omega)$	t2(℃)	$RT(K\Omega)$	t2(℃)
246.000	-33.0	38.302	-2.4	16.667	13.9	8.417	28.9	4.066	46.7	1.797	69.3
222.727	-31.5	37.407	-2.0	16.392	14.3	8.286	29.3	3.989	47.2	1.743	70.2
203.333	-30.2	36.545	-1.5	16.122	14.6	8.156	29.7	3.913	47.7	1.689	71.2
186.923	-28.9	35.714	-1.1	15.859	15.0	8.028	30.0	3.838	48.2	1.636	72.1
172.857	-27.7	34.912	-0.7	15.600	15.3	7.902	30.4	3.763	48.7	1.584	73.1
160.667	-26.6	34.138	-0.3	15.347	15.7	7.778	30.8	3.690	49.2	1.532	74.1
150.000	-25.6	33.390	0.2	15.098	16.0	7.655	31.1	3.617	49.8	1.480	75.2
140.588	-24.5	32.667	0.6	14.854	16.4	7.534	31.5	3.545	50.3	1.429	76.3
132.222	-23.6	31.967	1.0	14.615	16.7	7.415	31.9	3.474	50.8	1.378	77.4
124.737	-22.7	31.290	1.4	14.381	17.0	7.297	32.3	3.403	51.4	1.327	78.6
118.000	-21.8	30.635	1.8	14.151	17.4	7.181	32.6	3.333	51.9	1.278	79.8
111.905	-20.9	30.000	2.2	13.925	17.7	7.067	33.0	3.264	52.5	1.228	81.0
106.364	-20.1	29.385	2.6	13.704	18.1	6.954	33.4	3.196	53.1	1.179	82.3
101.304	-19.3	28.788	3.0	13.486	18.4	6.842	33.8	3.128	53.6	1.130	83.7
96.667	-18.6	28.209	3.4	13.273	18.8	6.732	34.2	3.061	54.2	1.082	85.1
92.400	-17.8	27.647	3.8	13.063	19.1	6.623	34.6	2.995	54.8	1.034	86.5
88.462	-17.1	27.101	4.2	12.857	19.5	6.516	35.0	2.929	55.4	0.987	88.1
84.815	-16.4	26.571	4.5	12.655	19.8	6.410	35.3	2.864	56.0	0.940	89.7
81.429	-15.7	26.056	4.9	12.456	20.1	6.306	35.7	2.800	56.7	0.894	91.4
78.276	-15.0	25.556	5.3	12.261	20.5	6.203	36.1	2.736	57.3	0.847	93.2
75.333	-14.4	25.068	5.7	12.069	20.8	6.101	36.5	2.673	57.9	0.802	95.1
72.581	-13.8	24.595	6.1	11.880	21.2	6.000	36.9	2.611	58.6	0.756	97.1
70.000	-13.1	24.133	6.4	11.695	21.5	5.901	37.4	2.549	59.3	0.711	99.2
67.576	-12.5	23.684	6.8	11.513	21.9	5.802	37.8	2.488	59.9	0.667	101.5
65.294	-12.0	23.247	7.2	11.333	22.2	5.706	38.2	2.427	60.6	0.622	104.0
63.143	-11.4	22.821	7.5	11.157	22.6	5.610	38.6	2.367	61.3	0.579	106.6

$RT(K\Omega)$	t2(℃)										
61.111	-10.8	22.405	7.9	10.984	22.9	5.515	39.0	2.308	62.1	0.535	109.5
59.189	-10.2	22.000	8.3	10.813	23.3	5.422	39.4	2.249	62.8	0.492	112.6
57.368	-9.7	21.605	8.6	10.645	23.6	5.329	39.9	2.190	63.6	0.449	116.1
55.641	-9.2	21.220	9.0	10.480	23.9	5.238	40.3	2.133	64.3	0.407	119.9
54.000	-8.6	20.843	9.4	10.317	24.3	5.148	40.7	2.075	65.1	0.364	124.3
52.439	-8.1	20.476	9.7	10.157	24.6	5.059	41.2	2.019	65.9	0.323	129.2
50.952	-7.6	20.118	10.1	10.000	25.0	4.971	41.6	1.963	66.7	0.281	134.9
49.535	-7.1	19.767	10.4	9.845	25.4	4.884	42.0	1.907	67.6	0.240	141.7
48.182	-6.6	19.425	10.8	9.692	25.7	4.798	42.5	1.852	68.4	0.199	150.0
46.889	-6.1	19.091	11.1	9.542	26.1	4.713	42.9				
45.652	-5.6	18.764	11.5	9.394	26.4	4.629	43.4				
44.468	-5.2	18.444	11.8	9.248	26.8	4.545	43.8				
43.333	-4.7	18.132	12.2	9.104	27.1	4.463	44.3				
42.245	-4.2	17.826	12.5	8.963	27.5	4.382	44.8				
41.200	-3.8	17.527	12.9	8.824	27.8	4.302	45.3				
40.196	-3.3	17.234	13.2	8.686	28.2	4.222	45.7				
39.231	-2.9	16.947	13.6	8.551	28.6	4.144	46.2				

Sensor 3979 R-T Conversion Table

Compressor discharge temp sensor

T (°C)	Rnom(k	T (°C)	Rnom (k	T (°C)	Rnom (k	T (°C)	Rnom(k	T (°C)	Rnom(k
Ix(C)	Ω)	Ix(C)	Ω)	1X(C)	Ω)	IX(C)	Ω)	Ix(C)	Ω)
-30	935. 5274	45	25.0632	88	5.4644	103	3.4468	118	2.2407
-25	730. 8775	50	20.6226	89	5.2937	104	3.3468	119	2.1795
-20	547.1939	55	17.0537	90	5.1292	105	3.2494	120	2.1201
-15	413. 3308	60	14.1799	91	4.9705	106	3.1551	121	2.0823
-10	314.9602	65	11.8424	92	4.3174	107	3.0649	122	2.007
-5	241.92	70	9.9348	93	4.6697	108	2.9765	123	1.953
0	137.25	75	8.3706	94	4.5272	109	2.8915	124	1.9007
5	145.3908	80	7.0818	95	4.3396	110	2.8093	125	1.35
10	114. 4973	81	6.3522	96	4.2563	111	2.7299	126	1.3009
15	90. 4342	82	6.6311	97	4.1287	112	2.653	127	1.7533
20	71.9808	83	6.4182	98	4.0049	113	2.5735	128	1.7071
25	57.6227	84	6.2134	99	3.3354	114	2.5066	129	1.6623
30	46.4064	85	6.0154	100	3.77	115	2.4388	130	1.6139
35	37.5883	86	5.3249	101	3.6536	116	2.8898		
40	30.613	87	5.6413	102	3.5509	117	2.804		

FB/E8. Outdoor coil pipe high temp protection error diagnose and solution

Error Code	Power PCB Led2	Possible Error Reason	Error Solution
FB/E8	Flash 15 times	Outdoor unit heat	1.Check if the outdoor is too near the wall
		exchange not good	2.Check if fan blowing
			3.Check if the coil temp sensor error

Trouble shooting:

Index6: Coil Pipe temp sensor Clip

E9. AC antifreeze twice error diagnose and solution

Error Code	Outdoor Led2	Possible Error Reason	Error Solution
E9	No flash	Inlet or Outlet water temp is lower than 4c, AC antifreeze	Check inlet and outlet water temp sensor not loose or not error

EA. DHW antifreeze twice error diagnose and solution

Error Code	Outdoor Led2	Possible Error Reason	Error Solution		
EA	No flash	DHW tank water temp is lower than 5c, antifreeze 2 times within 60 minutes	Check DHW tank temp sensor is at warm location of DHW tank top		
\langle	Check E sensor is DHW tank	DHW tank temp at warm location of c top.	Relocate the sensor to correct location		
	Check if se PCB to th broken. C other reas temp lowe	ensor is loose from the sensor head or Check if there is son for the water er than 5° C.	Reconnect the sensor or Replace the sensor or other action to avoid the water is lower than 5° C		

F1: Voltage Protection error

Error Code	Outdoor Led2	Possible Error Reason	Error Solution
F1	Flash 1 times	Voltage too high or too low (after voltage become normal 165~265VAC, unit auto restart)	Check if the electricity supply is ok, wire not loose.

Module PFC error

F2	Rating module	Flash	PFC module of IPM board connection	1 Check if there is any hum mark at IDM
	PFC error		wire loose or IPM module broken	1. Check if there is any burn mark at IPM
F6	IPM or module	Flash 14	1.Comm wire between IPM module and	1.Check if the IPM module(PFC) connection wire with
	control board fault	times	outdoor PCB	outdoor PCB not loose.
			2.IPM Module is burned or IPM has no	2. Check if there is any burn mark at IPM
			power supply from the AC contactor	3. Check if the AC contact supply the power the the IPM
			3. Outdoor PCB comm port error	4. Check if the outdoor PCB error

Index7:

Burned mark

Rectifier pins

Check if the IPM is burned

Turn off the power and wait until the LED light is off and the large capacitors discharge completely, and dismount the IPM. Use a digital tester to measure the resistance between P and UVWN; UVW and N.

Multimeter Pole		Normal Resistance value	Multimeter Pole		Normal Resistance value
(+) Red	(-)Black		(+) Red	(-)Black	∞
	Ν	>0. 3M Ω	U	Ν	>0. 3M Ω
	U	>0.6M Ω	V		>0.3M Ω
Р	V	>0. 6M Ω	W		>0. 3M Ω
	W	>0. 6M Ω	Ground		∞
	Ground	∞	DC+	DC-	>0.2M Ω

Note : 1st use 2M ohm scope and put red pole at P, black pole to N,U,V,W. then measure from U,V,W, ground to N. All should be big resistance as shown above. If some resistance is 0, it means the rectifier is burned.

Check if the IPM is burned

1st Measure DC+ to any other terminals AC1,AC2,LA,LB,DC-, then measure DC- to other terminals, all should be more than 0.2M Ω resistance or ∞ , If one direction is 0 resistance, it means the rectifier is burned.

Note 2: If sometimes the fuse will jump when connect the power supply, so the LCD cannot display anything. Please unplug AC2 wire of IPM board, and check if it will jump the fuse. If the LCD can display, then it means the water control board is ok. Only the IPM may be damaged.

F3: Compressor stopped abnormally

Error Code	Outdoor Led2 Possible Error Reason			Error Solution
F3	Flash	Power supply error, Or electromagnetic interference, Or Outdoor PCB error Or compressor broken		 Check all the wire connection not loose Shut off the power supply wait for 3 minutes and reconnect the power again. Replace IPM or compressor
\langle	Check if a connectio compress	ny wires n from IPM to or are loose	Yes	Fix all the wires.Power off for 3 minutes and reconnect the power again
<	Check if t mark at IP	No here is any burned M	Yes	Replace the IPM board
\langle	Check if th electroma near the h	No here is any gnetic interference eat pump.	Yes	Power off for 3 minutes and reconnect the power again
\langle	Check if co by measur power sup	No pmpressor broken e compressor pply pins	Yes	 Power off for 3 minutes and reconnect the power. If compressor broken, replace compressor.

Index 8: Check if compressor Failure

1.Open the compressor wire connection cover.

2. Remove the 3 wires from the compressor pins.

3. Measure the resistance between any 2 pins. It should be about 0.5~50hm(Ω). Please use the correct measurement scope. If the compressor failure, the resistance will be 0 or $\,\,\infty\,\,$

4. Check the resitance between ground and any one of the 3 pins. Any pin to ground resistance should be $\,^{\infty}$

F7: Com	7: Compressor fail to start error					
Error Code	Outdoor Led2	Possible Error Reason	or Reason Error Solution			
F7	Flash		Check the wire cor	nnection, PCB and compresosor		
	Check if any wires connection from ou IPM and from IPM compressor are lo	atdoor to to pose	Yes →	Fix all the wires. Power off for 3 minutes and reconnect the power again		
\langle	Check if there is an mark at Power PCB o	ay burned or IPM	Yes ►	Replace the IPM board or power PCB		
	Check if compressor	- failure	Yes	Replace the compressor		

F8: Outdoor unit over current error

Error Code	Outdoor Led2	Possible Error Reason	Error Solution
F8	Flash 11 times	Compressor working current too high	 Check the compressor relative wire connection. Shut off power supply and reconnect it after 3 minutes. Check if the refrigerant volume is ok Open the heat expansion valve 360~1080°

F9: Outdoor IPM module overheat or over current

Error	Outdoor Led2	Possible Error Reason	Error Solution
Couc			
FA	Flash 5 times	IPM temp too high,	1. Shut off power supply and reconnect it after 3 minutes.
		compressor current too high	2. Check if the IPM connection wire not loose or IPM burn.

P1: Refrigerant system high pressure protection

P2: Refrigerant system low pressure protection

Error	Outdoor	Possible Error Reason	Error Solution	
Code	Led2			
P1	Flash 2	1.High pressure switch loose or fault	1. If the error display before compressor start, it means high pressure	
	times	2. There is air get inside water circuit.	switch error. Please reconnect high pressure switch or change the	
		3. Water flow volume is too small, water	switch. If error display when water temp is about 40c, please check	
		pump is too small.	if the high pressure switch or mid pressure switch is exchanged	
		4. Throttling device(expansion valve)	connected by mistake, refer to wiring diagram.	
		problem	2.Clean and purge the air from the water circuit.	
		5. There is air get inside the refrigerant	3. Clean the Water circuit filter or add a bigger water pump if water	
		system or refrigerant volume too high	flow is not enough	
			4. Open the thermo expansion valve $360 \sim 1080^{\circ}$, as per page 23	
			5.Meausre the refrigerant pressure, re-vaccum the system and	
			recharge the refrigerant.	
P2	Flash 9	1. Low pressure switch loose or fault		
	times	2. Throttling device(expansion valve) problem		
		3.Heat expansion valve need to be preheated	1.If the error display before compressor start, it means low pressure	
		4.Refrigerant low(leak)	switch error. please reconnect the low pressure switch or change it	
			2.Open the thermo expansion valve 360~10800, ,as per page 23.	
			3.Power off for minutes and power on again then turn on the unit.	
			Maybe repeat this 2 or 3 times to preheat the expansion valve.	
			4. Check the refrigerant leakage with soap water	

Trouble shooting:

Index9:

wire1 and wire2 are mixed common "N" wire of high pressure and low pressure switch.

High low pressure switch connection port

P5:Indoor unit water flow fault

Error Code	Outdoor Led2	Possible Error Reason	Error Solution
P5	Not flash	1.water flow too small. 2.Water flow	1.Clean the water filter, check if water pump big enough
		switch fault	2. Check and reconnect water flow switch

Trouble shooting:

P7: Power supply missing phase

P8: Power supply wrong phase

Error Code	Outdoor Led2	Possible Error Reason	Error Solution
P7	Flash	Power connection fault	Reconnect power supply wires
P8	Flash	Power connection fault	Reconnect power supply wires

Trouble shooting:

To check if it has correct power supply to compressor

1. Open the compressor wire connection cover.

2. Check the compressor U,V,W terminal are connected correctly with IPM board U,V,W terminal.

P9: Communication error

Error Code	Outdoor Led2	Possible Error Reason	Error Solution
P9	Flash	Power supply connection fault	1.Check the power supply wire connection and wires
		or communication between	between outdoor PCB and indoor PCB
		indoor and outdoor PCB fault	2. Check if the outdoor PCB error

Trouble shooting:

Notes for maintenance tools:

During service, if the 250 pin and plug are too tight, It need to use a straight screw driver to loosen the plug carefully from the bottom. And use needle-nose pliers to unplug the wire.

7. Parameter Meaning and Usage

Please press key M+▲ for 3 seconds and enter to adjustable parameter setting mode.

NO.	Name	range/meaning	default	Take default parameter valve as example to explain the parameter function
00	power off auto restart	0: not restart; 1: Auto restart	1	After power off and on again, the heat pump will auto start with previous condition
01	hot water temp return differential Δ	2~15℃, minus return differential	2 ℃	If target 30c, compressor start when DHW temp lower than 28 $^\circ\!\!\!{\rm C}$ and stop at 30 $^\circ\!\!\!{\rm C}$
02	air conditioning return differential Δ	2~15℃, minus return differential	2 ℃	If target 30c, compressor start when AC temp lower than 28c and stop at 33c
				(When it reach 29c, it will reduce frequency, when reach 30c, it will run in lowest speed, when reach 33c, it will
				stop. This is a bit different from fix speed heat pump, it is to keep the compressor work at highest COP as
				compressor each stop and start will take almost 10 minutes to get the high COP condition.)
03	defrost start coil pipe temp.	-20~5℃	0 ℃	If Coil pipe temp sensor is lower than 0 $^\circ\!\mathrm{C},$ ready for defrost
04	water source anti-freeze temp.	-20~5℃	2 ℃	Only for water source
05	antifreeze exist temp.	-5℃~5℃	5℃	Water temp higher than this temp stop antifreeze
06	defrost exist temp.	10~35℃	30 ℃	When coil pipe temp sensor higher than 30 $^{\prime}\!\mathrm{C}$, quit defrost
07	Defrost max duration time	15~99 mins	30	If coil pipe temp sensor not higher than 30c, this will stop defrost
08	Smallest Interval between 2 defrosts	15~99 mins	35	2 nd defrost can only start 35 minutes after last defrost
09	ambient temp of DHW backup	-20~20°C	0 ℃	When air temp is lower than $0{\rm °C},$ the backup DHW heater "E1" will be active, when compressor cannot reach
	electrical heater active			target temp within 15minutes, the electric heater "E1" will be on
10	ambient temp of AC backup	-20~20°C	0 ℃	When air temp is lower than 0°C, the backup AC heater "E2" will be active, when compressor cannot reach target
	electrical heater active			temp within 15minutes, "E2" will be on.
11	DHW working frequency limit.	2~10, (refer to DHW frequency	10	"2" means 20% of max speed, "10" means 100% of max speed.
		20%~100% max speed)		When heat pump is connected old DHW tank with short inner heat exchange coil, heat pump is easy to report
				high pressure protection due to inner coil temp is too high, reduce this parameter value will solve this problem.
12	Compressor discharge air protection	A0~C7 = (100~127℃)	B0	"A" means 10, "B" means 11, "C" means 12.
	temp			"A0" = 100, "A1"=101"A9"=109,"B0"=110
13	Defrost interval time multiply rate	0: No defrost	1	If Parameter 08 ="35", then the 2 defrosts interval time will be 35*1=35minutes
		1~4: Parameter08*1~4		If P13=2, the 2 defrosts interval time will be 35*2=70minutes
14	G3 3-way valve function parameter	0: G3 is seasonal switch valve;	0	If P14=0, G3 is seasonal switch valve, when the heat pump is working for heating, G3 is on, when heat pump is
		1: G3 is solar pre-heat valve;		working for cooling, G3 is off.
				If P14= 1, when AC heating run, it will compare solar water tank temp with AC returned water temp, when solar
				water tank temp is more than 5 $^\circ\!\!\!\!^\circ$ higher than AC returned temp, the 3-way valve G3 electricity supply will be on;
				when solar water tank temp –AC returned temp is less than 2 $^\circ\!\!\mathbb{C},$ G3 will be off.
				Normally use one 3-way valve with 3 wires. 2 wires are always connected with electricity supply, 1 signal wire is
				connected with heat pump G3 terminal port to enable function.
				It is necessary to add a relay as shown page 10
26	AC water pump running mode	0, 1, 2	0	(0:not stop, 1:stop when reach target temp, 2: run 1 minute and stop 15 minutes)
				If set P26=1, must use AC buffer tank and put the returned water temp to buffer tank and use enough glycol at
				the water system to avoid frozen.
27	2nd heat source control validation	0, 1	0	(0: 2nd heat source control disable; 1: control enable) P27 will combine with P28 to work. If P27=1, when air
				temp is lower than P28, heat pump will stop, E2 will be On
28	Air temp to start 2nd heat source	-15~10℃	-15℃	If P27= 1, when air temp is lower than -15 $^{\circ}$ C, E2 will be on.
	control			
29	Free cooling switching temp	-16°C~20°C	5° C	-10~ -16° C shows –A~-G.
		(Differential +-2° C)		If SW1 set to "ON", C5 will be free cooling water pump. G2 will be free cooling switch. When air temp is lower
				than 3° C, C5,G2 will both be on. When air temp is higher than 7° C, C5,G2 will be off.

8. Other Useful Reference Information

1. Heat pumps works without any error code, but seems not working perfect

- Check if refrigerant system is ok. if refrigerant high pressure side is at correct pressure range as per page 22 index 2. If Refrigerant pressure is too low, Refrigerant may has leakage. If pressure is too high, it may be the expansion valve problem or water flow not enough.
- 2. Check parameter C19 value to see if mid-pressure switch is open (set target temp more than 20c higher than current water temp, start heat pump, after 5 minutes, check C19 value and record the value for 10minutes). If it keep work at low speed, maybe the mid-pressure switch is loose.
- 3. **Check water system:** When heat pump is working at the highest frequency, if the returned water temp (LCD normal display according to manual icon 9), and outlet water temp (at parameter CO3) difference(Δ T) near heat pump Plate heat exchanger is about 4~6° C. it means the water flow is ok.

-		-
Model	Max frequency(Hz)	Min Frequency
5KW	65Hz	15Hz
6KW	75Hz	20Hz
9KW	90Hz	20Hz
11KW	90Hz	25Hz
15KW	70Hz	15Hz
23KW(3phase)	70Hz	30Hz

Max Minimum working frequency for our inverter heat pump

If water flow is not enough, need to add water pump, clean filter, purge air from water system, please check if all the valves are open, check valves are in correct direction.

2. Buffer tank size choice

Inverter heat pump can adjust its output capacity according to requirement. If requirement is reduced during operation, the heat pump will try to reduce its speed first. So normally buffer tank is not necessary for inverter heat pump. If compressor work with the lowest speed, all terminals(fan coils and radiators) are open, but the water temp still increase 3° C more than target temp, the compressor will stop. If in the same time, the total water system water volume is too little, the compressor may start and stop too frequently. In this situation, either your heat pump capacity is too big, or you may need to add a buffer tank.

In experience, if at standard air temp, the house heat loss(required heating capacity) is less than half of the heat pump capacity, then you need to count to see if need to add a buffer tank. The buffer tank purpose is to keep the water temp reduce not more than $2\sim4^{\circ}$ C within 5minutes after compressor stop.

The minimum buffer tank size= house heat loss per hour(w)/1.16/4/12 – water volume at the other part of the water system(such as water in the pipes, radiators, fan coils)

For example, at standard winter weather, you house heat loss per hour is 15kw, 15000/1.16/4/12 =269Litres If other part water has only 150litre, then you need 119Litre buffer tank. If other parts has more than 269litres water, you don't need to add a buffer tank.

8. Other Useful Reference Information

3. Master-Slave Working Mode Wire Connection Method

Our heat pumps can be connected as master-slave working mode.

In most situation, the master heat pump will work alone. If the air temp is too low, one heat pump cannot heat the water to target temp within 15 minutes, it will start slave heat pump to work together.

Or if master heat pump has some error and cannot work, it will start the slave heat pump

The master heat pump AC backup heater port is connected to slave heat pump 2nd AC switch with a relay. The detailed connection is as below.

(Note: Slave heat pump should be turned on and choose AC Heating mode)

4. Heat Pump Maintenance

Before any maintenance or cleaning of the unit make sure the switch is off and no power to it

Routine maintenance

This section is intended for end users and is very important to maintain regular operation of the unit over time. A few operations, carried out regularly can prevent serious intervention by the staff.

Necessary operations do not require particular expertise and are summarized in simple controls of some components of the unit.

- Clean outdoor coil, the skin must be able to get through maximum heat exchange. Therefore, it is always necessary to keep its surface free of dust and dirt that could be deposited by the action of the fans..

• With a brush to remove all foreign objects such as paper, leaves, etc, who are on the surface of the outdoor coil..

- Clean the aluminum surface of the outdoor unit, eg a vacuum cleaner
- Check that all fins are not damaged or bent.
- Control water flow defrost: During winter operation, occurs from time to time the defrosting of the outdoor coil.

8. Other Useful Reference Information

You need to check that the drain is not blocked. If drainage is not correct, with cold temperatures, it could form a layer of ice on the base, which would compromise the functioning of the whole system.

Periodic Maintenance

We recommend a regular maintenance by qualified personnel Here are some checks to be performed:

DHW circuit

• Check direction of rotation of the DHW pump, and the possible presence of air on the pump.

• Check that the pressure of condensation and evaporation in this mode are accurate at all times, depending on the temperature of DHW and outdoor air temperature.

- Check the power consumption (Amps) of the unit operating conditions at that time.
- Check that the unit in this mode to achieve the temperature selection.
- Check that when the temperature drops to DHW temperature selection, the unit starts to operate in this mode.

Air Conditioning circuit

• Check direction of rotation of the pump air conditioning, as well as the possible existence of air in the system.

• Check that the pressure of condensation and evaporation in this mode are accurate at all times, depending on the temperature of cooling water flow and outside air temperature.

• Check the temperature drop in cooling water, is within the recommended range. If not, check: water pump, air in the water circuit, dirt in the water system, etc).

- Check the power consumption (Amps) of the unit operating conditions at that time.
- Check that the unit in this mode to achieve the temperature selection.
- Check that when the temperature drops to air conditioning temperature selection, the unit starts to operate in this mode.
- Check and clean air conditioning water filter
- Check and clean tap water inlet water filter

